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Considering only the structure of oxygen lattice and employ-
ing bond valence equations, the conduction geometry and the
activation energy of Na1 motion in Nasicons are modeled. This
is performed by calculating the valence sum m(x, y, z) for a grid
of points inside the oxygen lattice, then by following with iter-
ative procedures the pathway with lowest relative m(x, y, z)
values, starting from a speci5ed position and initial direction.
After a certain trajectory the Na1 ion will reach a second
position in the lattice, which will usually correspond to a known
crystallographic position. Di4erent rhombohedral and mon-
oclinic Nasicons are examined, enabling us to verify some the
ionic movement. Structural parameters governing conduction are
described, based on the distortions of real structures from an
idealized (archetype) Nasicon structure, in turn modeled by bond
valence equations. ( 2001 Academic Press
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INTRODUCTION

Since Hong and Goodenough et al. (1,2) discovered Nasi-
con (Na superionic conductor) materials, great interest has
been devoted by many researches to investigating the prop-
erties of structure, crystal chemistry, and fast ionic conduct-
ivity. The three-dimensional framework of such a structure
is constituted by robust connection of ZrO

6
octahedra and

(Si, P)O
4

tetrahedra sharing corner oxygens. Every two oc-
tahedra there are three tetrahedra present. This framework
generates in its interior the conductive pathways responsible
for the superior Na` mobility. The complete substitution of
P for Si in the tetrahedral sites allows the formation of
a solid solution series. This is expressed by the well known
notation Na

(1`x)
Zr

2
Si

(x)
P
(3~x)

O
12

with 04x43. The
symmetry of the di!erent terms is rhombohedral (s.g., R-3c)
except for a certain range (1.6(x(2.4) where the samples
display monoclinic symmetry (s.g., C2/c) at room temper-
ature, with a transition to rhombohedral symmetry near
1703C (3). A second substitution mechanism, Na for Zr in
the octahedral sites, was evidenced later (4, 5). This makes it
possible to form a second mixed crystal series with
stoichiometry Na

3
Zr

(2~x@4)
Si

(2~x)
P
(1`x)

O
12

(0(x(1.67)
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with rhombohedral symmetry, except for a short monoclinic
range (0(x(0.33). This series shows constant Na content
and the charge imbalance due to the Na}Zr substitution is
compensated by a contemporary Si}P substitution on tetra-
hedral sites. Kohler et al. (6) examined the di!usion path in
a high-temperature single crystal with composition close to
the term of this series with x+0.75. They pointed out that
anisotropy and magnitude of the temperature factors are
both extremely high and on this basis a joint probability
density function was proposed to describe the conduction
path.

Most authors agree that structural features are the key to
explaining the conduction mechanism, but also the number
of ionic carriers and their distribution over the di!erent sites
are factors likely a!ecting conductivity (7). Up to now,
modeling Na site occupancies and Na` conduction mecha-
nisms has been attempted by empirical correlation with
structural factors. Some authors found correlation with
unit-cell parameters a

0
and c

0
, or with unit cell volume.

More recently, other geometrical factors were scrutined, like
the size of the bottlenecks which connect di!erent Na sites
in the structure (8) or the occupation of intermediate Na
positions in the conduction channel (called mid-Na) (9).

The conduction pathway among the di!erent Na posi-
tions of the rhombohedral Nasicon has been long debated.
When TranQui et al., (8) determined the crystal structure of
Na

4
Zr

2
Si

3
O

12
they proposed one conduction path between

Na1 and Na2 and a second from Na2 to neighboring Na2.
The latter was held more important because of the wider
channel opening involved. Kohler et al., in their investiga-
tion (6) on a Zr-de"cient composition (Na

3.1
Zr

1.78
Si

1.21
P
1.76

O
12

) found the path from Na1 to Na2 be energetically
more probable on the basis of the Fourier transform of
temperature factors. Subramanian et al. investigated di!er-
ent scandium-substituted Nasicons and concluded that the
Na2}Na2 pathway is more likely in the rhombohedral
phase (10). Recently Losilla et al. (11) examined the series of
Nasicons Na

1.4
M

1.6
In

0.4
PO

12
(M"Ti, Sn, Hf, Zr) and

evidenced that two bottlenecks a!ect the Na mobility from
Na1 to Na2 positions, excluding direct connection between
Na2 and Na2 positions.



FIG. 1. Stacking of sodium and zirconium coordination polyhedra
along z to form an in"nite ribbon in the idealized model.
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The lowest activation energies for ionic conduction are
reported for the monoclinic phase (x+2) (3), however, ionic
pathways are still not de"ned and only inferred from sim-
ilarity to the rhombohedral phase.

IDEALIZED NASICON STRUCTURE

Before modeling the conduction in di!erent Nasicons, we
wish to describe an idealized structure (archetype), and
therein the conduction path will be evidenced. We show that
real structures derive there from by small rotations/defor-
mations of bonds, which in turn in#uence conduction paths
and energy barriers for ionic movement.

The archetype structure consists of a close packed struc-
ture, in which all the distances between contacting oxygen
ions are kept equal. Therefore we suppose that all oxygen
ions are hard spheres with equal radius and then we con-
struct idealized coordination polyhedra around Zr and
(Si, P). As second step we arrange the polyhedra in the most
symmetric and close-packed manner.

A Zr polyhedron can be easily modeled as a regular
octahedron with two opposite faces parallel to the ab plane
and having the three corner oxygens directed along [100],
[010], [11 11 0] directions for one face and along [110],
[011 0], [11 00] directions for the opposite face (supposing
hexagonal symmetry). Two Zr octahedra, rotated 603 one
with respect to each other, are stacked along c, so that
a triangular prism is formed between them. Inside this prism
no cations are contained, but the three pairs of facing
oxygens along c form two of the four corners of three (Si, P)
tetrahedra. This block constitutes the asymmetric unit of the
framework, as pointed out by many authors (1}4). It has the
chemical composition 2 )Zr(O)

6
#3 ) (Si, P)"Zr

2
(Si, P)

3
O

12
with a number of negative charges (1 to 4) depending on

the Si/P ratio. These building units are in turn stacked along
c, being connected by Na1 counterions. These Na` ions
result coordinated by six oxygen atoms, located at the
vertices of a triangular antiprism. In this way an in"nite
ribbon is originated, as shown in Fig. 1., which derives from
the sequence

2}ZrO
6
}void}ZrO

6
(rotated by 603)}Na1}2

If our idealized picture is described in the R-3c space group,
it can be geometrically shown that coordination polyhedra
are regular and all the contacting oxygen atoms are at the
same distance (i.e., the O}O distance will be twice the
O ionic radius, which is kept constant for all oxygen atoms
in the structure) if O1 is placed at (1

6
, 0, 1

6
#d) and O2 at (1

6
,

1
6
, 1
12

). The d parameter can be unambiguously determined if
we consider that (in the R-3c space group) the in"nite
ribbons along c are shifted by symmetry by (#1

3
, #2

3
, #2

3
)

and (#2
3
, #1

3
, #1

3
), and moreover by translation. The

oxygen atoms of the primitive ribbon (0, 0, 0) must therefore
contact the oxygen atoms of the symmetry equivalent rib-
bons forming the regular coordination tetrahedra (Si, P)O

4
.

In our idealized model these tetrahedra must be constituted
by four contacting hard spheres and therefore the tet-
rahedra become regular. This makes it possible to calculate
the d parameter and in turn the a

0
, c

0
parameters of the

idealized rhombohedral cell. If r
0

indicates the oxygen
radius, one obtains

a
0
"4 )J3 ) r

0
,

c
0
"(4 )J2 )J3#6) ) r

0
,

d"2 ) (J2/(6 )J2#3 )J3)!1
6
) ) r

0
+0.020 ) r

0
.

Finally, the radius r
0

of the oxygen atoms can be pre-
dicted using bond valence equations (12}14), by minimizing
at the same time the di!erences between the valence sum
around any atom and its atomic valence (Valence Sum Rule)
and the valence sum around any close loop in the bond
graph (Equal Valence Rule).

The relating equations (13, 14, 16) are

s
ij
"exp [(R

0
!R

ij
)/0.37],

where R
0
(Na)"1.803, R

0
(Si)"1.624, R

0
(P)"1.617,

R
0
(Zr)"1.928

<
i
"+

j

s
ij
,

0" + s
ij
.
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A least square re"nement of both <
i
and +

-001
s
ij

yielded
the result of r

0
"1.434 A_ , corresponding to a O}O distance

of 2.867 A_ that well compares to the mean value of O}O
distances observed in Nasicons (e.g., 2.7990 A_ , (9)). Na1 lies
at the center of a regular oxygen octahedron, while Na2 lies
at the center of an eightfold coordinated polyhedron.

Real structures are obtained by slightly rotating the op-
posite faces of the Na1, Zr coordination polyhedra of the
archetype. In particular, referring to Fig. 1, the triangle built
up by connecting three O(1) is rotated clockwise by an angle
e (between 4 and 93) from its ideal position (e"0); this
rotation will produce symmetry-equivalent rotations for all
other O(1) triangles. The rotation of the second triangle,
constituted by three O(2), is described by introducing a sec-
ond angle / which measures the relative rotation between
O(1) and O(2) triangles. In the idealized model this angle
/ equals 603 and in the real structure it is comprised be-
tween 573 and 633. The e!ects of these slight rotations are
fundamental to ionic mobility, as will be shown below.
Because of the lack of an archetype model, up to now these
e!ects have not been described in the literature.

VALENCE BOND ANALYSIS

This paper explores the use of bond valence equations
(12}14) in order to predict the conduction geometry and
mechanism both for monoclinic and rhombohedral Nasi-
cons on the basis of the structural descriptions of oxygen
lattice of the phase. Oxygen network carries a negative
charge and contains interstices into which the mobile Na`
cations are placed for charge balance. Bond valence rules
are hence used to map the bond valence sum m(x, y, z) that
a Na` ion would have if placed on an arbitrary point (x, y, z)
of these interstices (14). Points in this valence map corre-
sponding to the valence of the ion (in this case 1) are
energetically proper sites for it, a higher value representing
a too small cavity, therefore with higher repulsive potential
energy. Values smaller than one correspond to a large
cavity, in which the ion has an anomalously high thermal
factor. In these large interstices the sodium atoms have
su$cient room and they are statistically distributed o!-
center within this space.

By moving the arbitrary point (x, y, z) over a grid cover-
ing the whole unit cell volume one can "nd the probable
trajectory for the Na` ions. This can be done by following
the points with lower m(x, y, z) starting from a speci"ed
position (e.g., Na1) and following a certain initial direction
(e.g., toward Na2). Then this direction is not "xed during the
path, and the ion is left free to direct itself following the
lowest m(x, y, z) inside a solid angle with an iterative
process. This simulates the e!ect of an external electrical
force acting on the ion. After a certain trajectory, the ion
quite easily reaches a second position in the lattice, which
corresponds usually to a known crystallographic position
for Na` ions. The valence sum for Na` ion can be plotted
versus the distance (d) traveled along, thus obtaining a plot
of m(d) versus d(A_ ). Saddle points of the m(d) function
correspond to potential barrier (bottlenecks) encountered
by the ion along its trajectory. The analysis of the m(d)
curves makes it possible to "nd the conduction hindrances
(bottlenecks) to the ions movement for each Nasicon struc-
ture (where the O(1) and O(2) positions are known) and
hence to relate this to the electrical characteristics of the
materials.

For sake of clarity this treatment is divided in four parts,
namely

(i) idealized Nasicon structure
(ii) rhombohedral Nasicons of the series Na

(1`x)
Zr

2
Si

(x)
P
(3~x)

O
12

(04x43)
(iii) miscellaneous Nasicons with rhombohedral sym-

metry
(iv) monoclinic Nasicon Na

(1`x)
Zr

2
Si

(x)
P

(3~x)
O

12
(with

x"2.05).

Idealized Nasicon Structure

Neighboring Na1}Na2 and Na2}Na2 distances are geo-
metrically equal to 3.782 and 4.932 A_ respectively; the real
path traveled by the ion can be modeled by imposing that
Na` ions follow the lowest m (x, y, z) trajectory from the
starting position to the arriving one (Na1}Na2 in Fig. 2a
and Na2}Na2 in Fig. 2b). The corresponding m(d) plots are
shown in Fig. 3. The bottleneck for the trajectory Na1}Na2
corresponds to one face of the Na1 octahedron, while for the
way Na2}Na2 this corresponds to the passage throughout
a distorted triangle which builds one of the faces of the Na2
polyhedron.

If we compare the m(d) maxima of the two trajectories
(called hereinafter VUmax) one can conclude that the
easiest path is unambiguously Na2}Na2.

Rhombohedral Nasicons of the Series
Na(1#x)Zr2Si(x)P(3!x)O12 (with 04x43)

The sodium cations are located at di!erent lattice posi-
tions, their total amount being determined by charge bal-
ance. In the rhombohedral phase Na` ions are place on two
positions, namely Na1 and Na2, along the conduction chan-
nels. The variation in electrical conductivity along this series
has been measured by many authors. A summary of these
measurements has been reported elesewhere (7). The values
were referred to 3003C, so as all compositions have rhom-
bohedral symmetry (transition monoclinic to rhombohedral
occurs at about 1703C for the range 2.004x42.25). Tak-
ing into consideration the various terms with x varying from
0 to 3 in the solid solution, the m(d) curves are calculated,
both for the Na1}Na2 and for the Na2}Na2 path. Calcu-
lations show that the e!ects of the O(1), O(2) rotations from



FIG. 2. (a and b). Projection onto the horizontal plane (z"0) of the Na1}Na2 and Na2}Na2 conduction path in the idealized structure. The
bottleneck triangle is drawn with dashed lines.
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the idealized model are marked: by way of the rotation, the
Na1}Na2 path becomes straighter, while simultaneously its
saddle point decreases. On the contrary, the Na2}Na2 path
changes its shape, however, remaining longer than
Na1}Na2 (Fig. 4). It displays now two saddle points of
nearly the same height with a depression in between. The
Na2}Na2 path shows therefore two VUmax, very close
to the VUmax of the Na1}Na2 path. By considering
that the Na2}Na2 path is longer and displays two
maxima, we can say that the Na1}Na2 path is more prob-
able. The #ex near 1.2+1.3 A_ along the conduction path
Na1}Na2 corresponds to the mid-Na position pointed out
by Boilot (9).

It is interesting to note that, although the shapes of the
conduction paths Na1}Na2 and Na2}Na2 remain nearly
unchanged, the height of the curves in terms of VU vary
notably along the series as shown in Fig. 5. Two interesting
FIG. 3. m(d) curves for Na1}Na2 and Na2}Na2 conduction path in
idealized structure. The Na2}Na2 path has a lower VUmax value and the
results are more probale.
correlations can be drawn. First between VUmax along the
Na1}Na2 conduction path (values of the saddle points) and
the logarithm of electrical conductivity ()cm at 3003C) and
the second between the same VUmax and the two rotation
angles e and /. Both relationships are linear, as shown in
Fig. 6. This makes it possible to predict the conductivity on
the basis of structural values only, in particular the two
rotation angles. These angles seem to be the fundamental
structural feature in#uencing the ionic conductivity along
this series. It is noteworthy to remark that the term having
x"2 corresponds to the highest conductivity, and to the
highest values of rotation angles e and /.

Miscellaneous Nasicons with Rhombohedral Symmetry

Substituted Nasicon compositions have been examined
from the point of view of structure and ionic conduction.
FIG. 4. m(d) curves for Na1}Na2 and Na2}Na2 paths in rhombo-
hedral Na

3.05
Zr

2
P
0.95

Si
2.05

O
12



FIG. 5. m(d) curves for Na1}Na2 paths for rhombohedral
Na

(1`x)
Zr

2
P

(3~x)
Si

(x)
O

12
for di!erent x values.

FIG. 7. E
!#5

(eV) for ionic conduction versus VUmax for di!erent
substituted Nasicons.
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Recently, rhombohedral compositions Na
1.5

Me
1.5

In
0.5

P
3

O
12

(Me"Ti, Sn, Hf, Zr) have been examined (11). Sub-
ramanian et al. examined substituted Nasicons, in which
zirconium is substituted by scandium in the octahedral sites,
FIG. 6. Rotation angles in sexagesimal degrees e (top), / (center), and
resistivity (bottom), versus VUmax for Nasicons of the rhombohedral
series Na

(1`x)
Zr

2
P
(3~x)

Si
(x)

O
12

. Linear interpolations are shown.
the charge imbalance being compensated by substitution of
Si by P substitution (10). On the basis of the reported
structural data the Na1}Na2 path results are clearly more
probable (Fig. 8); from the calculated trajectories the
VUmax values are compared with the activation energies
for ionic conduction which have been experimentally found
for the same phases.

Fig. 7 shows a well interpolated linear relationship be-
tween these parameters for di!erent substitutions. More-
over, the shape of the m (d) curves (Fig. 8) for Na

1.5
Zr

1.5
In

0.5
P
3
O

12
con"rms the two bottlenecks along the conduction

path, as recently reported (11). The second bottleneck likely
a!ects activation energy, as it can be estimated from its
higher VUmax, in accordance with the results of Losilla
et al. (11). The shape of m(d) curves indicates that these
FIG. 8. m(d) curves for Na1}Na2 and Na2}Na2 conduction paths for
Na

1.5
Zr

1.5
In

0.5
P
3
O

12
.



FIG. 9. m(d) curves for di!erent conduction paths in monoclinic
Na

3
Zr

2
Si

2
PO

12
.
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results are peculiar to the above series and are not directly
extensible to other Nasicons.

Monoclinic Nasicon Na(1#x)Zr2Si(x)P(3!x)O12

(with x"2.05)

In the monoclinic Nasicons (s.g., C2/c) the Na2 position
of the rhombohedral structure is splitted into two positions,
Na2 and Na3 (17). According to Boilot et al. (9), the Na2
position is fully occupied while the Na3 site is nearly half
empty and strongly displaced along the conduction channel
toward the Na1 position. The monoclinic unit cell contains
four Na2 positions, which are completely occupied.
Na1(4]) and Na3(8]) positions are only partial occupied
(3). It has been already noted (3) that the fully occupation of
FIG. 10. Projection onto the ab plane of conduction connectivity for
monoclinic Nasicon. Na1}Na2}Na1 path results inhibited, while
Na1}Na3}Na1 are strongly enhanced.
the Na2 position tends to inhibit ionic movement. The full
occupancy of Na2 position is con"rmed by its valence sum
near to 1 (0.972 VU). Na1 is strongly underbonded
(0.556 VU), while the Na3 position has an intermediate
value of 0.890. The di$culty in Na1}Na2 movement is fully
con"rmed by valence analysis which yields a VUmax of 1.28
along this path. In the monoclinic structure there are, how-
ever, two nonequivalent Na1}Na3 paths, both of them
having much lower valence values. The "rst of these two
paths has a VUmax of 0.984, the second displays a very
broad relative maximum, lower than the starting value of
0.984. The m(d) function in this case smoothly decreases
from 0.890 to 0.556 VU. As a consequence, along both
Na1}Na3 paths, Na` ions move without reaching at any
point a valence sum higher or equal to 1, as shown in Fig. 9,
a fact that can explain the exceptionally high conduction of
the monoclinic material. The connectivity along the net-
work is preserved, by the fact that between two Na1 posi-
tions two channels (Na1}Na3}Na1) are active and the third
(Na1}Na2}Na1) is not, as depicted in Fig. 10.

CONCLUSIONS

Valence bond analysis has been successfully applied to
model ionic pathways and conductivity in di!erent Nasicon
structures. The description of the Nasicon archetype allows
us to show that rotation angles e and / of O(1), O(2)
triangles from ideal positions are the main geometrical
feature in#uencing Na` mobility in rhombohedral Nasi-
cons of the series Na

(1`x)
Zr

2
Si

(x)
P
(3~x)

O
12

(04x43). For
this Nasicon family as well as for miscellaneous Nasicons
with rhombohedral symmetry the calculated ionic trajecto-
ries and the VUmax values well compare with resistivities
and activation energies for ionic conduction which have
been experimentally found for the same phases.

The exceptionally high ionic conductivity for monoclinic
Nasicon Na

(1`x)
Zr

2
Si

(x)
P
(3~x)

O
12

(24x42.25) has been
explained by Na1}Na3 paths, where Na` ions move with-
out reaching at any point a valence sum higher or equal to 1.
The connectivity along the network is preserved by the fact
that between two Na1 positions two channels
(Na1}Na3}Na1) are active and the third (Na1}Na2}Na1) is
inactive.
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